자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제1. 공조 조닝은 효율적인 공조 운전제어 및 에너지절약을 용이하도록 계획하여야 한다. 공조 조닝을 계획 시 기준이 되는 요소 5가지를 쓰시오.(5점)

■ 공조 조닝(zoning) 계획시 기준 요소

- 1. 실의 열부하 특성별 조닝
 - (1) 외주부 존(perimeter zone)와 내주부 존(interior zone)으로 분할하고 다시 외주부를 방위에 따라 2~4개의 존으로 분할한다.
 - (2) 공기-수식의 경우에는 다시 분할하지 않는다.
- 2. 실의 용도 및 기능별 조닝 : 복합 건축물 경우
- 3. 실의 사용 시간대별 조닝
 - (1) 사무실은 8시간, 전자제어실·경비실은 24시간, 식당 및 강당은 간헐적으로 사용한다.
 - (2) 8시간 사용은 일반 공조시스템을 사용하고, 24시간 사용은 개별제어 및 단독운전이 가능한 개별 유닛을 설치한다.
- 4. 실의 방위별 조닝 : 동측은 오전 8시경 냉방부하 최대, 서측은 오후 4시경 냉방부하 최대, 남측은 정오경 냉방부하 최대가 된다.
- 5. 실의 온습도 조건별 조닝 : 항온항습실 등은 별도의 조닝을 한다.
- 6. 환기조건 : 회의실, 강당 등은 별도로 조닝을 한다.
- 7. 덕트 스페이스 및 장치의 크기에 다른 조닝

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제2. 다음 항목에 답하시오.(8점)

2-1) "신에너지 및 재생에너지 개발·이용 보급촉진법"에서 규정하는 신에너지, 재생에너지를 각각 정의하고 시행규칙에 명시된 신에너지설비, 재생에너지설비를 각각 3개씩 쓰시오.(4점)

1. 신에너지 정의

기존의 화석연료를 변환시켜 이용하거나 수소·산소 등의 화학 반응을 통하여 전기 또는 열을 이용하는 에너지로서 다음 각 목의 어느 하나에 해당하는 것을 말한다.

■ 신에너지 설비

- (1) 수소에너지 설비
- (2) 연료전지 설비
- (3) 석탄을 액화·가스화한 에너지 및 중질잔사유를 가스화한 에너지

2 재생에너지 정의

햇빛·물·지열(地熱)·강수(降水)·생물유기체 등을 포함하는 재생 가능한 에너지를 변환시켜 이용하는 에너지로서 다음 각 목의 어느 하나에 해당하는 것을 말한다.

■재생에너지 설비

- (1) 태양에너지 설비(태양열 설비, 태양광 설비)
- (2) 풍력 설비
- (3) 수력 설비
- (4) 해양에너지 설비
- (5) 지열에너지 설비
- (6) 바이오에너지 설비
- (7) 폐기물에너지 설비
- 2-2) "고효율에너지기자재 보급 촉진에 관한 규정"에 따른 고효율에너지기기 적용되는 LED 관련 품목 4가지를 쓰시오.(4점)

LED 교통신호등	LED 유도등	컨버터 외장형 LED램프		
컨버터 내장형 LED램프	매입형 및 고정형 LED등기구	LED 보안등기구		
LED 센서 등기구	LED 모듈 전원공급용 컨버터	LED 가로등기구		
LED 투광등기구	LED 터널등기구	직관형 LED램프(컨버터외장형)		
문자간판용 LED모듈	형광램프 대체형 L1	ED램프(컨버터내장형)		

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제3. 건축물의 결로에 대하여 다음 물음에 답하시오.(6점)

3-1) 다층 재료로 구성된 벽체의 내부 결로 발생가능성 산정에 필요한 물성치와 판정과정에 대하여 쓰시오.(3점)

1. 물성치

- (1) 다층재료의 열저항을 구하기 위한 재료의 열전도율, 두께, 공기층의 열저항
- (2) 다층재료 경계면의 수증기압을 구하기 위한 재료의 투습비저항, 두께
- (3) 경계면 온도 및 노점온도 산정을 위한 실내외 공기온도, 상대습도, 습공기선도

2. 판정과정

- (1) 벽체의 온도구배 산정
- (2) 벽체의 노점온도구배 산정
- (3) 벽체의 온도구배가 노점온도구배보다 낮은 부분에 내부결로 발생
 - ① 벽체와 같은 다층재료를 통한 온도변화는 다음의 식에 의하여 구할 수 있다.

$$\Delta t = \frac{R}{R_T} \times \Delta t_T$$

여기서, Δt : 특정재료 통과시 온도강하 R : 특정재료의 열저항

 Δt_T : 벽체 전체 온도강하 R_T : 벽체 전체의 열저항

② 아래의 공식에 의하여 특정재료를 통과할 때 떨어지는 수증기압(vapor pressure)을 구할 수 있다.

$$\Delta P = \frac{R_V}{R_{VT}} \times \Delta P_T$$

여기서, ΔP : 특정재료 통과시 수증기압 강하

 R_V : 특정재료의 투습저항

 ΔP_T : 벽체 전체의 수증기압 강하

 R_{VT} : 벽체 전체의 투습저항

- ③ 다층재료 경계면의 수증기압을 알면 습공선도상에서 노점온도를 찾을 수 있다.
- 3-2. "공동주택 결로 방지를 위한 설계기준"에서의 결로 방지 성능 평가 지표와 그 산출식에 대하여 쓰시오.(3점)
 - 1. 해당부위의 "결로 방지 성능"을 평가하기 위한 단위가 없는 지표로 "온도차이비율(TDR: Temperature Difference Ratio)"이 사용됨
 - 2. "온도차이비율(TDR : Temperature Difference Ratio)"이란 '실내와 외기의 온도차이에 대한 실내와 적용 대상부위의 실내표면의 온도차이'를 표현하는 상대적인 비율을 말하는 것으로, 아래의 계산식에 따라 그 범위는 0에서 1사이의 값으로 산정된다.

-3-

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제4. 건물의 기밀성능 평가 방법 중 압력차 측정법에 대한 다음 사항을 쓰시오.(6점) 4-1. 측정 원리(2점)

■ Blower Door를 이용한 가압법/감압법

외기와 접해있는 개구부에 팬을 설치하고 실내로 외기를 도입하여 가압(pressurization)을 하거나, 반대로 실내 공기를 외부로 방출시켜 실내를 감압(depressurization)시킨 후 실내외 압력차가 임의의 설정 값에 도달하였을 때 팬의 풍량을 측정하여 실측대상의 침기량 또는 누기량을 산정하는 방법

4-2. 기밀성능 표시방법 중 CMH50. ACH50의 정의(2점)

- 1. CMH50(m³/h) : CMH50은 실내외 압력차를 50Pa로 유지하기 위해 실내에 불어 넣거나 빼주어야 할 공기량을 표현한 것(50Pa은 기후조건의 영향을 최소화하기 위한 압력차로 약 9m/s의 바람이 불어올 때 생기는 압력에 상응함)
- 2. ACH50(회/h) : CMH50값을 실체적(측정되어지는 것으로 규정된 공간의 총 체적)로 나는 값. 즉, 건물에 50Pa의 압력차가 작용하고 있을 때, 침기량 또는 누기량이 한 시간 동안 몇 번 교환되었는가로 표현한 것. 서로 다른 크기의 건물에서 기밀성능을 비교할 때 유용한 척도

4-3. 측정 전 대상 공간에 취해야 하는 조치(2점)

■ Blower Door Test를 위한 사전조치 사항

- 1. 검사대상이 되는 건물은 하나의 압력형성시 하나의 존이 되어야 한다.
- 2. 설비
 - (1) 실내공기를 사용하는 보일러는 꺼야 한다.
 - (2) 기계적 공기 조화기 작동중지
 - (3) 외기와 연결되는 배기 및 흡입구는 막아야 하며 혹은 중앙기계의 배관을 막는다.
 - (4) 화장실의 배기구, 부엌의 후드는 작동을 멈추되 기밀하게 밀폐하지는 않는다.
 - (5) 개폐조작이 불가능한 승강기의 환기구등은 기밀하게 합당한 테이프로 밀폐한다.
- 3. 벽난로가 있는 경우는 사용을 중지하고 재를 제거해야 함
- 4. 실내의 문은 활짝 열러 놓은 상태로 만일을 위해 물건으로 고정시킨다.
- 5. 검사대상이 되는 건물의 내부의 압력차는 형성되는 전체 압력의 10%이상을 초과해서는 안 된다.(소규모의 건물에서는 문제가 되지 않음)
- 6. 계획상 존재하는 창호나 기타 개구부는 닫는다.
- 7. 화장실의 배수구가 아직 물로 채워지지 않았을 경우는 해당되는 관을 막는다.
- 8. 건물의 상태를 꼼꼼히 기록을 해야함(창호, 외피, 임시적으로 설치한 기밀층 그리고 그 외에 검사를 위해 취한 모든 사항을 가급적이면 자세하게 기록, 테스트기의 설치 위치도 이에 속함)

자격등급	제1회 건축물 에너지 평가사	수험번	호	제한시간
2급	2차 실기시험 기출문제	성	명	150분

문제5. 최근 공조설비시스템에서 에너지를 절감할 수 있는 방안을 중요시된다. 공조설비시스템에서 반송 에너지의 절감 방법 4가지를 쓰시오.(10점)

- 1. 과잉 환기의 억제 : 외기 도입계통, 배기계통에 정풍량 장치나 댐퍼의 개도 조절 기능 장치를 채용한다.
- 2. **불필요시 환기 정지** : 기계실 등의 기기발열 제거가 목적인 환기설비는 항온기 등의 간단 한 ON/OFF 장치의 이용으로 필요시만 환기 운전을 한다.
- 3. **저부하시 환기량 제어** : 주차장, 기계실 등에서 오염물이나 발생열량이 감소되면 환기량을 팬 대수제어, 변풍량제어 등으로 한다.(VAV방식, VVVF)
- 4. 국소배기법 채용 : 한정된 위치에 발생원이 있는 경우 배기후드 등을 이용한다.
- 5. 공기조화에 의한 다량 환기 대책: 기계실의 열 제거가 목적인 경우에 풍량이 많고 운송경로가 긴 경우에 냉방장치를 이용해 냉각한다.
- 6. 자연환기의 이용: 환기는 가능하면 자연환기에 의하도록 하고, 기계환기 경우라도 창을 개방하고 자연에 의해 환기한다.

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제6. 도면을 참고하여 다음 물음에 답하시오.(12점)

6-1) 최대 조명전력이 필요한 장소와 해당 전력을 구하고 해당구역에 30W 조명기구를 설치할 때 필 요한 수량을 구하시오.(5점)

	복도 및홀	제1 사무실	제2 사무실	민원실	상황실	고객 지원실	문서고	숙직실	계단실	화장실 (여)	화장실 (남)	휴게실
조명 밀도[W㎡]	12	11.5	10	14	8.7	15	6.2	6.2	5.1	5.1	5.1	10

최대 조명전력이 필요한 장소 : 복도 및 홀

최대전력 : $12 \times 160 = 1920[W]$

필요한 조명기구의 수 : $\frac{1920}{30}$ = 64개

6-2) 태양광 설치도면(C-001, C-002)에서 설치되는 태양광 발전의 최대출력을 구하고, 해당월(①~③)의 발전량을 구하시오.(5점) (표준상태에서의 일사강도: 1kW/m²) 〈해당 지역의 월 적산 일사량 및 종합설계계수〉

구분	1	2	3	4	5	6	7	8	9	10	11	12
월 적산 경사면(30°) 일사량[kWh/m²월]	113.77	104.44	126.34	121.6	136.09	111.1	115.94	130.42	101.7	102,92	93	101.99
종합설계계수	0.81	0.81	0.81	0.81	0.76	0.76	0.66	0.76	0.76	0.81	0.81	0.81
월간 발전량[kWh/m²]	1						2		3			

종합설계계수 : 태양전지 모듈 출력의 불균형 보정, 회로 손실, 기기에 의한 손실 등을 포함

최대출력 = 모듈수 \times 1개당최대전력 = $3 \times 18 \times 200 = 10800[W] = 10.8[kW]$

월간발전량 = 어느 기간별 일사량 × 설계계수 × 모듈설치용량(최대출력)

- m²당 월간 발전량 = <u>월간발전량</u> 설치면적
- 설치 면적(m²) = 가로 × 세로 = 28.8 × 3 = 86.4 m²

구분	1	7	9
월적산경사면(30°)	113.77	115.94	101.7
일사량[kWh/m²월]	110.77	110,04	101.7
종합설계 계수	0.81	0.66	0.76
월간 발전량[kWh]	$113.77 \times 0.81 \times 10.8$ kw	$115.94 \times 0.66 \times 10.8$ kw	$101.7 \times 0.76 \times 10.8$ kw
클건 글건경[KWII]	= 995.26	= 826.42	= 834.75
설치면적	$86.4\mathrm{m}^2$	$86.4\mathrm{m}^2$	$86.4\mathrm{m}^2$
월간 발전량	$\frac{995.26}{86.4} = 11.52$	$\frac{826.42}{86.4} = 9.57$	$\frac{834.75}{86.4} = 9.66$
$[kWh/m^2]$	86.4	86.4	86.4

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

6-3) 최대 및 최소 발전량에 해당하는 월의 발전량을 구하시오.(2점)

■ 최대 발전량 (5월)

$$\frac{136.09 \times 0.76 \times 10.8}{86.4} = 12.93 [kWh/m^2]$$

■ 최소 발전량(11월)

$$\frac{93 \times 0.81 \times 10.8}{86.4} = 9.42 [kWh/m^2]$$

■ 월 발전량

1	2	3	4	5	6	7	8	9	10	11	12
11.52	10.57	12.79	12.31	12.93	10.55	9.57	12.39	9.66	10.42	9.42	10.33

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제7. 창호와 관련하여 다음 물음에 답하시오.(13점)

- 7-1. 창틀이 플라스틱, 유리의 공기층 두께가 6mm인 경우, 건축물 에너지절약설계기준에 근거하여 가~라 창 들 중. 단열성능이 우수한 것부터 순서대로 나열하시오.(3점)
 - 가. 로이유리(하드코팅) 복층창

나. 로이유리(소프트코팅) 복층창

다. 아르곤 주입 복층창

라 일반 삼중창

답:라-나-가-다

라. 일반삼중창(2.4)

나. 로이유리(소프트코팅)복층창(2.6)

가. 로이유리(하드코팅)복층창(2.7)

다. 아르곤 주입 복층창(2.9)

- 7-2. 아래 각각의 지표들에 대해 정의, 단위, 지표값이 클 때 건물 에너지성능에 미치는 영향을 쓰시오.(10점)
 - 가. 열관류율(U-factor)

나. 일사열획득계수(Solar Heat Gain Coefficient)

다. 가시광선투과율(Visible Transmittance)

라. 풍기량(Air Leakage Rate)

가. 열관류율(U-factor)

- (1) 정의 : 공기층·벽체·공기층으로의 열전달을 나타내는 것으로 벽체를 사이에 두고 공기온 도차가 1℃일 경우 1m²의 벽면을 통해 1시간 동안 흘러가는 열량
- (2) 단위 : kcal/m²·h·℃ 또는 W/m²K
- (3) 값이 커지면 벽체를 통한 열손실과 열획득량 증가로 인해 건물의 냉난방부하가 증가

나. 일사열획득계수(Solar Heat Gain Coefficient)

- (1) 정의 : 창호의 일사획득계수는 창호를 통한 일사획득 정도를 나타내는 지표로 직접 투과 된 일사량과 유리에서 흡수된 후 실내로 유입된 일사량의 합으로 계산
- (2) 단위 : 무차원
- (3) 값이 크면 창을 통한 일사획득량 증가로 난방기간에는 난방부하 저감에 도움이 되며, 냉방기간에는 냉방부하를 증가시킴

다. 가시광선투과율(Visible Transmittance)

- (1) 정의 : 가시광선투과율(Visible Light Transmittance)은 태양으로부터의 복사에너지 중 파장 영역 380-760nm인 가시광선이 유리를 투과할 때 투과되는 비율을 표현한 값
- (2) 단위: 0부터 1까지의 무차원 수치로 표현
- (3) 값이 클수록 일사획득계수(SHGC)도 높아져 좀 더 많은 일사량이 유입되어 여름철 냉방부하는 커짐. 또한 값이 커질수록 자연채광 도입량 증가로 인해 조명부하를 줄일 수 있어 내부발생열 저감에 기여

라. 풍기량(Air Leakage Rate)

침기율(또는 누기율, air leakage rate)

- (1) 정의 : 의도되지 않은 경로를 통하여 실내공간에 유출입 되는 공기량과 실체적에 대한 비율
- (2) 단위 : ACH50(회/h)
- (3) 값이 커지면 틈새바람에 의한 열손실과 열획득량 증가로 인해 건물의 냉난방부하가 증가

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제8. 다음 각 항목에 답하시오.(15점)

- 8-1) 난방도일 DD가 3,250($\mathbb{C} \cdot \mathbb{Q}/\mathbb{D}$)인 건물의 설계 난방부하가 200,000(kJ/h)이다. 도시가스(LNG)를 사용한다. 난방도일법을 이용하여 연간 연료사용량 $F_y(\mathrm{Nm}^2/\mathbb{D})$ 을 구하시오. (단, 설계 실내온도는 $22\mathbb{C}$, 외기온도 $-11.3\mathbb{C}$, 도시가스(LNG)의 고위발열량은 43,600(kJ/N \mathbb{m}^2)이고 난방시스템의 효율은 80%이다.)(10점)
 - 1. 난방부하 계산식에 의하여

$$q = K \cdot A (t_i - t_0)$$

$$200,000 = KA (22 - (-11.3))$$

$$KA = 6006.01 \text{kJ/h} \, \text{°C}$$

2. 난방도일법을 이용한 연간난방부하 계산

$$q = 24KA \cdot HDD = 24 \times 6006.01 \times 3250 = 4.685 \times 10^{8}$$

3. 도시가스 연간연료사용량(Fy)

Fy = 연간난방부하 =
$$\frac{4.685 \times 10^8}{$$
효율×고위발열량 = $\frac{4.685 \times 43,600}{0.8 \times 43,600}$ = 13431.77[N㎡/년]

8-2) 위와 같은 건물이 노후 되어 난방시스템을 96%인 고효율 난방시스템으로 교체할 경우, 연간 절감되는 도시가스(LNG)사용량 $\Delta F_y(\mathrm{Nm}^2/\mathrm{년})$ 을 구하시오.(5점)

효율 80%에서 96%로 교체할 경우 연간 절감되는 도시가스량 (ΔF_y)

$$Fy' = \frac{$$
연간난방부하 $}{ \hat{a} \hat{b} \times 2$ 위발열량 $= \frac{4.685 \times 10^8}{0.96 \times 43,600} = 11193.14 [Nm²/년]$

$$\therefore \triangle F_y = 13431.77 - 11193.14 = 2238.63[Nm^2/년]$$

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시	간
2급	2차 실기시험 기출문제	성 명	150분	

문제9. 중부지방에 위치한 건물의 에너지효율등급인증 평가결과가 아래와 같다. 다음 물음에 답하시오.(10점)

	난방	냉방	급탕	조명	환기
에너지 요구량	23.4	38.8	7.8	21.1	_
에너지 소요량	36.2	57.5	16.9	21.1	21.8
1차에너지 소요량	46.6	65.0	20.1	58.1	60.0

9-1) 에너지 요구량을 줄이기 위해 추가하거나 개선 방법 3가지를 쓰시오.(3점)

고단열, 고기밀, 축열, 자연통풍, 자연채광, 고성능창호, 차양장치, 이중외피 등 passive 요 소도입

9-2) 에너지 요구량의 변동 없이 난방에너지 소요량을 줄이기 위해 추가하거나 개선 방법 3가지를 쓰시오.(3점)

고효율보일러 등의 열원설비계획, 설비형태양열 시스템, 태양전지, 지열교환히트펌프, 폐열회수장치 등의 적용, 가변속제어, COP개선, 대수분할, 비례제어운전 등

9-3) 냉방과 조명의 에너지 소요량의 비는 57.5 : 21.1이나, 1차에너지 소요량의 비는 65.0 : 58.1이다. 이를 참고하여 ② 주요 에너지 종류를 추정하고 ④ 그 이유를 쓰시오.(4점)

1차에너지소요량에 냉방과 조명에 관계되는 1차에너지환산계수를 곱하여 1차에너지소요량을 구한다.

- ⑦ 냉방-연료(석유, 석탄, gas) 조명-전기
- ① 1차 에너지 소요량 = 에너지 소요량 × 1차 에너지환산계수

구분	1차 에너지환산계수
연료	1.1
전력	2.75
지역난방	0.728
지역냉방	0.937

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

문제10. 도면(A-001) 상의 '제2사무실'에 대해 다음 조건을 참고하여 난방 부하(W)를 계산하시 오.(15점)

〈조건〉- 외벽면적, 창호면적, 재료물성치 : 도면번호 A-001, A-002 참조 (단, 제2사무실의 남측외벽 및 창호를 제외한 나머지 부위의 전열은 없다고 가정한다.)

- 실내외 온도차 : 30K

- 방위계수 : 1.0

- 침입외기량: 24m³/h

- 공기의 정압비열 : 1.005kJ/kg·K

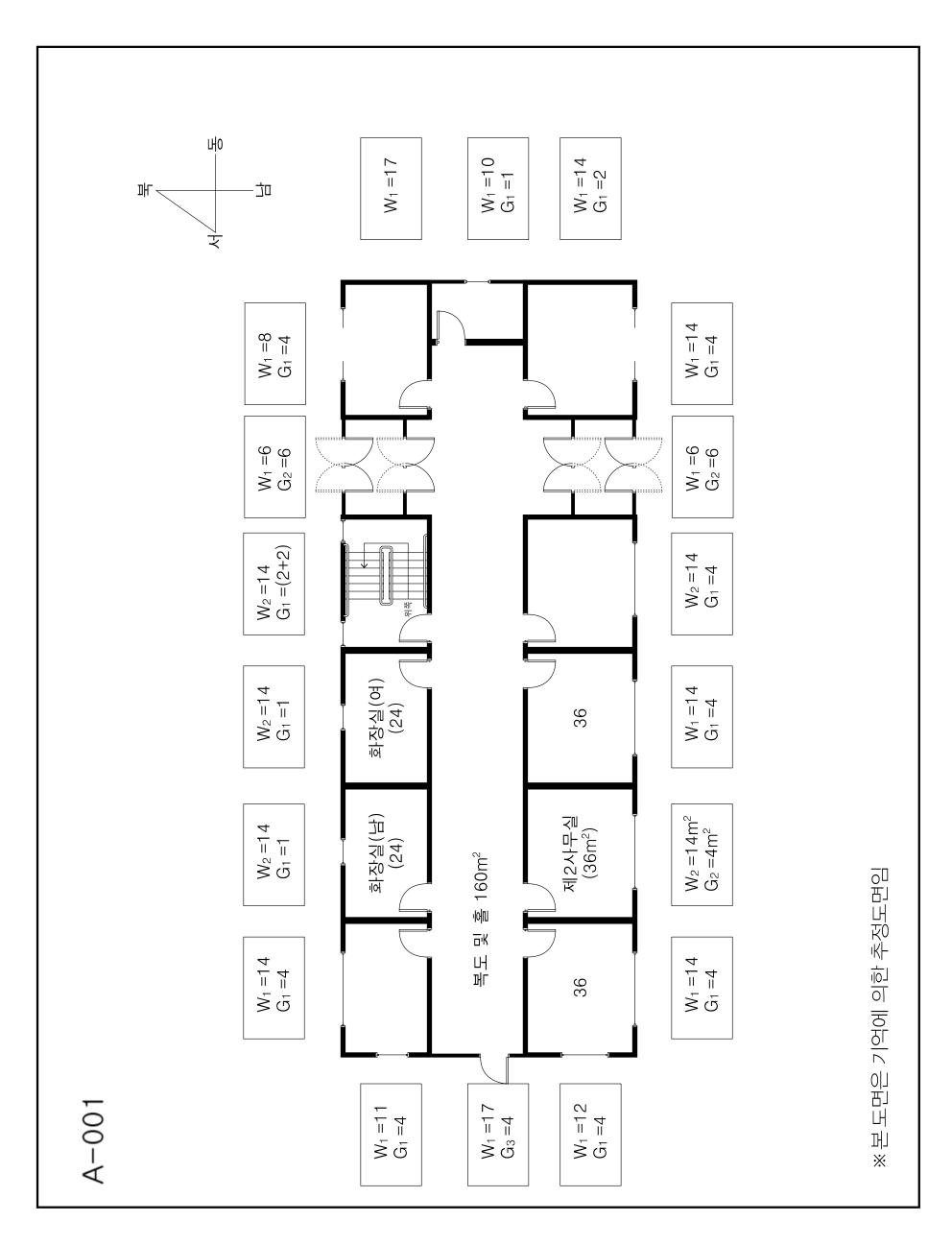
- 공기밀도 : 1.2kg/m³

1. 관류열량

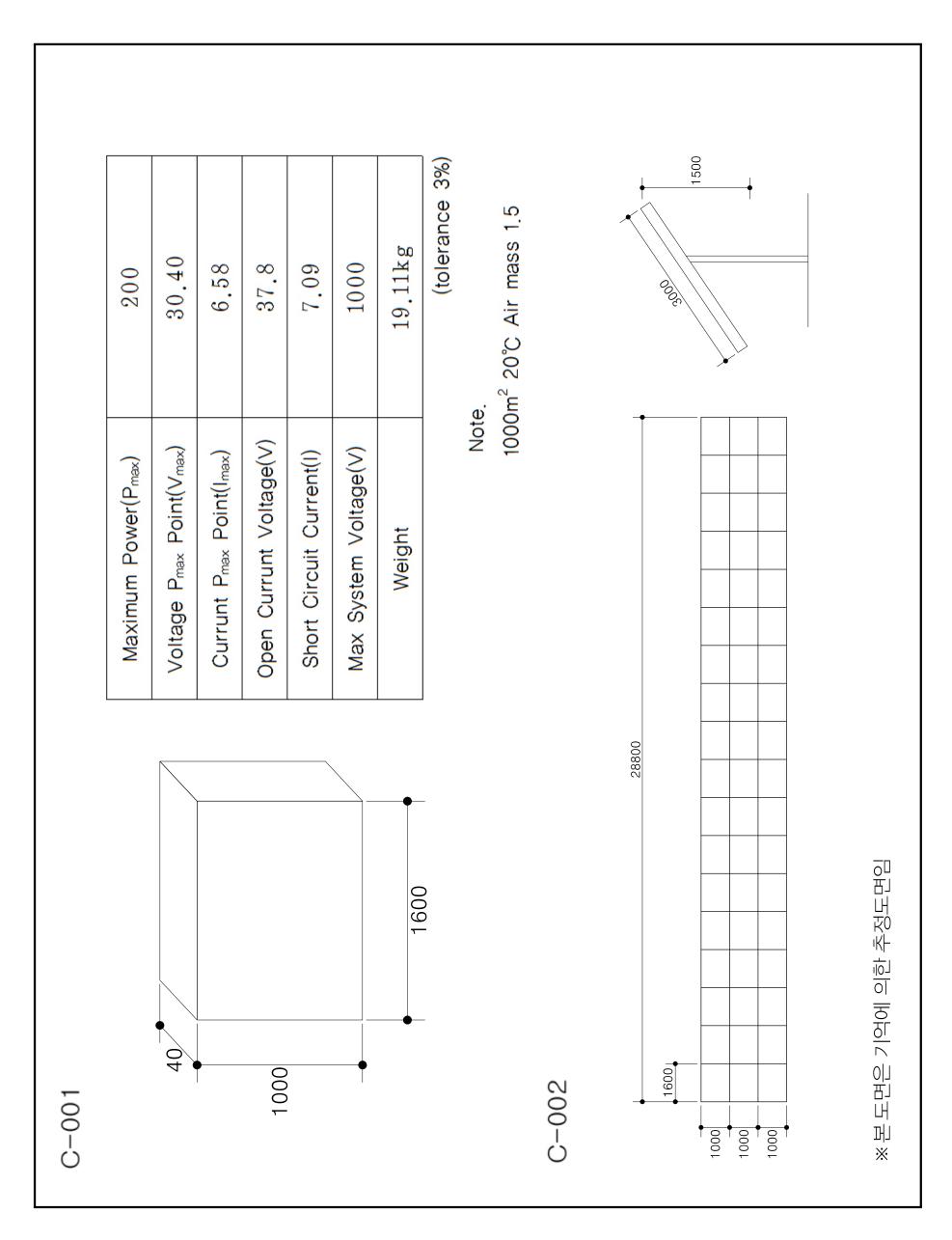
 $q_w = K \cdot A(t_i - t_0)k[W]$

(1) 외벽 : $q_1 = KA(t_i - t_0)k = 0.253 \times 14 \times 30 \times 1 = 106.26[W]$

(2) 창호 : $q_2 = KA(t_i - t_0)k = 0.181 \times 4 \times 30 \times 1 = 21.72[W]$


2. 침입외기부하

$$q_3 = GC(t_i - t_0)[kJ/h] = \gamma QC(t_i - t_0)[kJ/h]$$


 $= 1.2 \times 24 \times 1.005 \times 30 = 868.32[kJ/h] = 241.2[W]$

∴ 난방부하(q_T)=q₁ + q₂ +q₃ = 106,26+21.72+241.2 = 369.18[W]

자격등급	제1회 건축물 에너지 평가사	수험번	호	제한시간
2급	2차 실기시험 기출문제	성	명	150분

자격등급	제1회 건축물 에너지 평가사	수험번호	제한시간
2급	2차 실기시험 기출문제	성 명	150분

